Die gewichtsanalytische Bestimmung des Milchfettes; von Dr. F. Soxhlet.

Mittheilung aus dem Laboratorium der k. k. landwirthschaftlich-chemischen Versuchsstation in Wien.

Mit einer Abbildung.

Folgende Art der Ausführung läßt das Untersuchungsresultat in
weniger als zwei Stunden erreichen, ohne daß der Genauigkeit und
Sicherheit im mindesten durch diese wesentliche Beschleunigung Ein-
trag geschehen würde. Sie beruht auf der Anwendung wasserfreien
Gypsers zur Austrocknung der Milch und der Benutzung eines eigen-
thümlichen Fettextractionsapparates. Der wasserfreie Gyps, für diesen
oder einen ähnlichen Zweck bisher nicht angewendet, wirkt als Auf-
saugungs- und gleichzeitig in Folge seines Vermögens, Krystallwasser
aufzunehmen, als Trockenmittel; durch die Mitwirkung des letztgenannten
Vorganges wird die Darstellung eines fein vertheilten Trockenrück-
standes bedeutend beschleunigt. Man verfährt hierbei, wie folgt:

10 ccm Milch, gemessen und gewogen, werden in einer etwa 100 ccm
fassenden Porzellananschale mit 20% gebrannten Gyps (feinster Modell-
gyps) innig gemischt und die entstandene feuchte Masse auf das Wasser-
bad gebracht. Während des Eintrocknens wird dieselbe 2 bis 3 Mal
mittels des Spatels zerkrümelte und durchgerührt und nach 20 Minuten
langem Verweilen auf dem Wasserbade mit einem glatten Pistill zer-
rrieben. Nach weiteren 10 Minuten langem Trocknen ist sie zu einer
für die Extraction geeigneten Trockenheit gebracht. Die Bildung eines
Randes oder einer Haut von eingetrockneter Milch, wie solches bei
Anwendung anderer Aufsaugungsmittel leicht vorkommt, ist bei dieser
Art der Eintrocknung unmöglich und die Vertheilung der Milchtrocken-
substanz die gleichmäßigste und für die Extraction günstigste.

Extrahirt man den auf die beschriebene oder eine andere Art her-
gestellten Milchtrockenrückstand nach den bisher üblichen Extractions-
methoden mit Aether und überzeugt man sich von der vollständigen
Erschöpfung der Substanz dadurch, daß erneuerte Extractionen bezieh-
erneuertes längeres Inangahalten eines continuirlich wirkenden Extrac-
tionsapparates das Gewicht des Fettkölcbchens nicht mehr vermehren,
so findet man, daß die vollständige Lösung des Fettes nicht so rasch
beendet ist, als die gewöhnlich empfohlenen Proben — Verdunstenlassen
einiger Tropfen abfließenden Aethers auf dem Uhrglase (Rückstand)
or auf Papier (Fettfleck) — anzeigen. So dauert beispielsweise die
Extraction bis zur vollständigen Erschöpfung der Substanz bei An-
wendung des sehr verbreiteten Zulkowsky'schen Apparates (* 1873 208
295) in der Regel 10 Stunden. Die lange Dauer des Auswaschungs-
processes bei Benutzung dieses oder eines ähnlichen Apparates hat
darin ihren Grund, daß der genannte Apparat ebenso wie alle anderen
selbstthätig wirkenden Extractionsapparate, die in neuerer Zeit empfohlen
wurden, nach dem sonst verpönten Princip des ununterbrochenen Aus-
waschens arbeiten. Aus dem Rückflußkühler tröpfelt Aether auf die
Substanz, unten tröpfelt fetthaltiger Aether ab, der neu hinzu kommende
Aether verdünnt nur, ohne die Substanz zu überschichten, die Fett-
lösung, kurz die Wirkungsweise dieser Apparate ist mit allen jenen

\[A \text{ ist ein geschlossener } 35\text{mm weiter, } 150\text{mm hoher Glascylinder, an dessen Boden das } 13\text{ bis } 15\text{mm weite, } 105\text{mm lange Rohr } B \text{ angeflöget ist. } A \text{ und } B \text{ sind durch das } 8\text{ bis } 9\text{mm weite Rohr } C \text{ verbunden. Der aus einer dickwandigen, aber nur } 2\text{ bis } 3\text{mm im lichten weiten Röhre gefertigte Heber } D \text{ ist an der tiefsten Stelle am Boden von } A \text{ angeflöget, biegt sich an der Außenwand von } A \text{ nach aufwärts und geht immer der äusseren Cylinderwand anliegend nach abwärts und durch } B \text{ hindurch.}

Das Rohr } B \text{ wird mittels eines Korkes mit einem etwa } 100\text{cc fassenden weithalsigen Kölbcchen, } A \text{ mit einem Rückflußkühler verbunden. Die zu extrahirende Substanz füllt man in eine cylindrische Hülse von Filtrirpapier, welche folgendermaßen angefertigt wird: Man rollt um ein cylindrisches Holzstück, dessen Durchmesser } 4\text{mm geringer als die Weite des Extractionscyinders ist, ein Stück Filtrirpapier zweimal herum, läßt über die ebene Basis des Holzcyliner ein dem Durchmesser desselben entsprechendes Stück der gebildeten Rolle hervorstehen, biegt dieses, wie man ein Paket schließt, um und ehnet den gebildeten Boden der Hülse durch kräftiges Aufdrücken. Der Aether filtrirt durch eine solche Papierhülse so klar wie durch ein gewöhnliches Filter. Eine Baumwollunterlage ist ganz überflüssig. Nach dem Einfüllen der Gipsmasse legt man etwas Baumwolle in die Hülse oben auf, um ein Herausschlemmen des Pulvers durch die einfallenden Aethertropfen zu verhindern. Damit die Heberöffnung am Boden durch die Hülse nicht verschlossen werde, stellt man letztere auf einen Ring, welchen man aus einem } 3\text{ bis } 4\text{mm breiten Blechstreifen sich gebogen hat. Der obere Rand der Hülse muss wenigstens } 9\text{mm unter dem höchsten Punkt der Heberkammer liegen, sonst hält der Filterrand Fett zurück. Des weiteren ist nothwendig zu beachten, daß die Hülse nicht mit Baumwolle vollgefüllt werde, und daß der aus dem Kühler fließende Aether immer in die Hülse eintropfe. Man verbindet schließlich das gewogene weithalsige Kölbcchen mit dem Apparat, nachdem}
man in dasselbe etwa 25cc wasserfreien Aether und in den Extractionscylinder so viel von demselben eingegossen hat, daß derselbe durch den Heber überfließt, und stellt letzteres in Wasser, welches auf 65 bis 750 erhalten wird. (Ich bediene mich der ausgezeichnet wirkenden Thermoregulator von \textit{Andreas} und erhalte das Wasser auf 70 bis 720. Der Aether destillirt nun durch B und C nach A, sammelt sich darzelsein, indem er die Substanz durchränkt und überschichtet; sobald das Niveau des überdestillirten Aethers die höchste Stelle \(h \) der Heberkämmerung etwas überschritten, fängt der Heber an zu wirken und saugt die Aetherflüssigkeit zuerst in vollem, dann in durch Luftblasen unterbrochenen Strahle ab. Das Aufwärtsdestilliren wird hierdurch nicht unterbrochen; doch filtrirt die in der Hülse sich neuerdings sammlende Aethermenge, der Heberwirkung entsprechend, nicht rasch genug nach \textit{a}. In Folge dessen entleert sich der Heber und es erfolgt eine avenirmalige Ansammlung von Aether bis zur Höhe \(k \).

Hat man wasserfreien Aether verwendet, so ist ein 15 Minuten langes Trocknen mehr als hinreichend; ein längeres Erkaltenlassen im Wagekasten, als wie angegeben, hat eine Aenderung des Gewichtes nur um Bruchtheile eines Milligrammes zur Folge, was den Fett-Procentgehalt der Milch erst in den Tausendstelprocenten beeinflußt. Ein zehnmaliges Auswaschen mittels des beschriebenen Apparates genügt, um den mit gebrannten Gyps hergestellten Milchtrockenrückstand zu entfetten, wie die folgenden Versuche, welche mit vollkommen wasser- und alkoholfreiem Aether \textit{a} und bei einer Temperatur des Wasserbades von 700 angestellt wurden, zeigen:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{cc} & \text{g} & \text{Min.} & \text{g} \\
\hline
\text{a) 10 unabgerahmte frische Milch} & 10,302 extrahirt 10 Mal in 22 = 0,3522 Fett = 3,419 \\
& \text{noch 12} & 27 = 0,0007 & = 0,007 \\
\hline
\text{b) 10 von derselben Milch} & 10,307 extrahirt 10 & 24 = 0,3520 & = 3,415 \\
& \text{noch 12} & 26 = 0,0010 & = 0,010 \\
\hline
\text{a) 10 mit Rahm gemischte Milch} & 10,332 extrahirt 10 \\
& \text{noch 12} & 20 = 0,5322 & = 5,151 \\
\hline
\text{b) 10 von derselben Flüssigkeit} & 10,329 extrahirt 10 \\
& \text{noch 12} & 23 = 0,0008 & = 0,009 \\
\hline
\text{a) 10 Magermilch} & 10,340 extrahirt 10 \\
& \text{noch 12} & 23 = 0,1280 & = 1,288 \\
\hline
\text{b) 10 von derselben Milch} & 10,337 extrahirt 10 \\
& \text{noch 12} & 26 = 0,0005 & = 0,005 \\
\hline
\end{array}
\]

Für alle Fälle genügt die Extractionsdauer von 1/2 Stunde, wenn das Erwärmungswasser 700 oder etwas darüber hat; während dieser Zeit wird die Substanz 12 bis 14 Mal mit sieidend warmem Aether regelrecht ausgewaschen. — Anstatt die Milch zu messen und zu wiegen, genügt es, dieselbe nur zu messen und zwar mit einer Pipette, welche auch am Ablaufrohr eine Marke hat und für die man das Gewicht der ausfließenden Milch ein für alle Mal

\textit{1 Annalen der Physik, 1878 Bd. 4 S. 614.}

\textit{2 Absoluten Aether erhält man, wenn man käuflichen Aether mit Wasser ausschüttelt, über Aetzkalk stehen läßt, abdestillirt, das Destillat einen Tag lang am Rückflusskühler mit Natrium bis zum Anfärben der Gasentwicklung kocht und abdestillirt.}
bestimmt hat; die geringe Verschiedenheit im specifischen Gewicht der Milch kann dann vernachlässigt werden, da drei Einheiten in der 3. Decimalstelle beim specifischen Gewicht bei der Berechnung des procentischen Fettgehaltes diesen erst um 0,01 Proc. verrücken.

Der beschriebene Extractionsapparat eignet sich selbstverständlich für alle ähnlichen analytischen Operationen und präparativen Zwecke. Man kann mittels desselben in 11 Stunden eine Substanz 300 Mal mit siedendem Aether regelrecht erschöpfen; während dieser Zeit wird dieselbe, wenn bei jeder Auswaschung etwa 25 bis 30cc Aether ablaufen, bei einem thatsächlichen Aufwand von etwa 80cc, mit 7,5 bis 9l siedendem Aether ausgewaschen, wobei immer nur 25 bis 30cc Aether aufgegossen werden, wenn die vorher aufgegossene Menge abgeflossen war.